UCRL-JC-130569 Rev 1
PREPRINT

A Large Distributed Control System Using Ada in Fusion Research

John P. Woodruff
Paul J. Van Arsdall

This paper was prepared for submittal to the

Special Interest Group on Ada (SIGAda) 1998 Annual International Conference
Washington, DC
November 8-12, 1998

August 11, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

A Large Distributed Control System
Using Ada in Fusion Research

John P. Woodruff
Lawrence Livermore National Laboratory
PO Box 808 MS L-493
Livermore, CA 94551-0808
925.422.4661

woodruffl@lInl.gov

1. ABSTRACT

Construction of the National Ignition Facility
laser at Lawrence Livermore National
Laboratory features a distributed control
system that uses object-oriented software
engineering techniques. Control of 60,000
devices is effected using a network of some 500
computers. The software is being written in
Ada and communicates through CORBA.
Software controls are implemented in two
layers: individual device controllers and a
supervisory layer. The software architecture
provides services in the form of frameworks
that address issues common to event-driven
control systems. Those services are allocated
to levels that strictly prescribe their
interdependency so the levels are separately
reusable. The project has completed its final
design review. The delivery of the first
increment takes place in October 1998.
Keywords

Distributed control system, object-oriented development,
CORBA, application frameworks, levels of abstraction

2. THE NATIONAL IGNITION FACILITY
The $1.2 billion National Ignition Facility (NIF)
laser[8][10] is under construction at Lawrence Livermore
National Laboratory in California. When completed in
2003, it will be housed in a building the size of a football
stadium—704 feet long by 403 feet wide [Figure 1].

Paul J. Van Arsdall
Lawrence Livermore National Laboratory
PO Box 808 MS L-493
Livermore, CA 94551-0808
925.422.4489

Vanarsdalll@lInl.gov

This laser is the latest in a series of experimental machines
used to study inertial confinement fusion: nuclear fusion
reactions produced in a plasma of deuterium and tritium
that is compressed by a burst of laser energy[4][15]. The
NIF laser, which will be the world’s largest high power
laser, will deliver 1.8 Megaloule pulses of optical energy
onto a BB-sized fusion fuel capsule in a pulse 25
nanoseconds long. In an experiment, the target will be
heated to more than 100,000,000 degrees Celsius and
compressed to a density more than 20 times that of lead.

The scientific data that NIF produces in support of the
inertial confinement fusion program will support three
diverse objectives. As a key component of the US
Department of Energy’s Stockpile Stewardship and
Management Program, the NIF will enable the US to
maintain its nuclear device stockpile without resorting to
underground testing[11]. It will also collect preliminary
data about fusion as an environmentally attractive energy
source[7]. The ability to re-create conditions existing inside
the sun and stars will significantly impact the science of
astrophysics and high energy density physics[5].

NIF’s Integrated Computer Control System (ICCS) must
integrate more than 60,000 control points to manage 192
laser beamlines. Each shot of the NIF, which generates
about 400 Mb of data, will require aligning all components
of the laser so that all 192 beams propagate down 600-foot
paths through their amplifiers and into the target chamber
within 50 microns of their assigned spot on the
centimeter-scale target [1 and so that all beams arrive at the
center simultaneously within 30 picoseconds. The
alignment process will involve approximately 9500 stepper
motors, every one contributing to the position of a beam.
This alignment activity is carried out by an automated
system that analyzes some 3000 distinct images to
command motion of the stepper motors. Only when a
control loop fails to stabilize is it necessary for an operator
to intervene.

Optics assembly

/ building

-
e

Power conditioning
transmission

lines
k

Y

Amplifier /

power conditioning
modules
Periscope
polarizer mount
assembly

Beam control
& laser diagnostic
systems

Cavity mirror
mount assembly

. o
o ;,,f /mﬂ

Pockels cell assembly
Amplifier

Spatial filters

Control room
Master oscillator
room
Switchyard
support structure

Pre-amplifier
modules
Diagnostics
Transport turning building
mirrors Target chamber
Final optics
system

Figure 1: The National Ignition Facility

3. CONTROL SYSTEM REQUIREMENTS
Facilities such as the NIF represent major capital
investments that will be operated, maintained, and
upgraded for decades. The facility is, in a sense, a factory
in which physics experiments are manufactured.
Accordingly the computer and control subsystems must be
relatively easy to extend as innovative experiments are
planned. To assure a 30-year service life, the system must
permit periodic replacement with newer technology. The
system is being built using Ada on a modern
object-oriented software framework that will be extensible
and maintainable throughout the facility’s life cycle.

The NIF controls must be highly automated and robust. The
system will operate continuously around the clock with an
allowed downtime of 7.5 days per year for unscheduled
maintenance. A brief summary of requirements follows.

e The facility executes a physics shot once per 8 hours;

e The control system coordinates several experimental
cycles concurrently to allow different sections of the
laser to be used independently;

The ICCS provides the necessary controls for a dozen
operators and technicians to carry out coordinated
activities on a machine composed of about 60,000
distinct control points;

Automatic alignment of the entire laser, controlling
actuators in 4000 control loops driven by image
analysis, takes place in one hour;

Data are collected to support operational and mainte-
nance planning;

Selected images from a population of 600 cameras can
be displayed to an operator at ten frames per second;

The operator’s broad view of the entire machine’s
status is updated with a latency less than ten seconds;

The system architecture must be flexible enough to
absorb significant changes in requirements late in
project construction;

The system must be delivered on time and on budget.

4. LAYERED ARCHITECTURE

The ICCS layered architecture [Figure 2] was devised to
address the general problem of providing distributed
control for large scientific facilities that do not require
real-time capability within the supervisory software. The
resultant architecture consists of front-end processors (FEP)
coordinated by a supervisory system, and includes
commercially available components where possible.

Supervisory Controls

File Servers

0 Operator Consoles
0

Sun Solaris UltraSparc
Workstations

M Industrial Controls

[Network |

Database

Front End Processors

Intel-based

WindowsNT

11

PowerPC-based (=== Coooo
VME/VXI crates Programmable

Data
[gctiators J [Acquisition}

Timing System

Logic Controllers

- Safety
[LSS J [Interlocks J

Figure 2: Control System Architecture

4.1 Supervisor layer

Supervisory controls, which are hosted on UNIX
workstations housed in control consoles, provide
centralized operator controls and status, data archiving, and
integration services. Two high-performance servers sharing
redundant disk storage provide enhanced performance for
database operations, with the added benefit of greater
availability in the event one server fails. Several databases
are incorporated to manage both experimental data and data
used during operations and maintenance.

The supervisory software system is estimated to comprise
400 KSLOC. This layer provides a human interface in the
form of operator displays, data retrieval, and processing
that is used to coordinate control functions across laser and
target area equipment. The ICCS supervisor is partitioned
into eight cohesive subsystems, each of which controls a
primary NIF subsystem such as beam control or power
conditioning. The supervisory software is responsible for
duties ranging from configuration and control sequencing
to data processing and archival.

Interoperability among computers and operating systems is
addressed by leveraging the international standard
Common Object Request Broker Architecture
(CORBA)[9]. CORBA is used to implement the
communication within and between the supervisory and

FEP layers and provides plug-in software extensibility for
attaching control points and other software services
[Figure 3].

Operator Console

=

=

Client Upper-level

Software computers
Objects P! _
Supervisory
Control
Layer
4— ORBexpress distribution
Real-time Server
Control Software P':rgi;ne}sig(rjs
Layer Objects

Field bus

(Control Points: Sensors & Actuators

Figure 3: The Supervisor and the Front-end layer

communicate using CORBA

4.2 Front-end layer

Front-end processors implement the distributed control
functions of the ICCS by interfacing to the NIF control
points. There are eighteen different types of FEP computers
— some 450 computers in all — that differ by the devices that
they control. These FEP units are constructed from
VME/VXI-bus or PCI-bus crates of embedded controllers
and interfaces that attach to control points.

The control points are sensors and actuators attached to
interface boards plugged into an FEP backplane. In many
cases, control points are handled by intelligent components
that incorporate embedded controllers operated by small
fixed programs. This firmware that runs in the embedded
controller does much of the low-level work that would
otherwise be allocated to an FEP. Example components
implemented in this manner are stepping motor controllers,
photodiode detectors, and power supply controls. Laser
diagnostic sensors attach to FEP units by utilizing low-cost
field bus microcontrollers.

The FEP software performs sequencing, instrumentation
control, data acquisition and data reduction on control
points that are collocated. The software required for all the
FEP’s is estimated to comprise 100 KSLOC. The
architecture being described in this paper provides a
standard way for FEP units to be integrated with the
supervisory system by providing a common distribution
mechanism coupled with software patterns for hardware
configuration, command, and status monitoring functions.

Some real-time control is inevitably necessary. Functions
requiring real-time implementation are allocated to
software within a single FEP or to an embedded controller,
so communication over the local area network is not
obligated to meet hard-deadline schedules. Examples of
real-time functionality include control loops that require
deterministic response and diagnostic instruments that are
triggered by an integrated timing system within two
seconds of the laser shot.

A distinct segment of the control system contains industrial
controls for which good commercial solutions already exist
that can be integrated into the framework. This segment is
comprised of a network of programmable logic controllers
in the industrial control subsystem for safety interlocks and
thermal, gas, or vacuum utility controls.

Potentially hazardous equipment is permitted to operate
only when conditions are safe. Safety interlocks function
autonomously from the rest of ICCS to ensure safety
without dependency on the rest of the control system.

5 SOFTWARE DEVELOPMENT
STRATEGY

Risks to the control system infrastructure are mitigated in
the ICCS design by incorporating modularity,
segmentation, and open-systems standards so that
components and subsystems can be replaced at designated
interface points if necessary. Software development of an
expected 500,000 lines of code is carried out under an
integrated software engineering process that covers the
entire life cycle of design, implementation, and
maintenance.

This strategy is being realized by building object-oriented
software in Ada.

The ICCS employs Ada, CORBA, and object-oriented
techniques to enhance the openness of the architecture and
portability of the software. Ada was selected based on the
favorable experience of the engineering team when the
Nova laser software was constructed, then refitted, a decade
in the past. Introduction of Ada 95 object-oriented
techniques provide increased robustness through the ability
to build shared abstractions. C++ is supported for the
production of graphical user interfaces and the integration
of commercial software.

The software development is managed under a software
quality assurance plan that covers the entire life cycle of the
software design, production, and maintenance. Central to
the development are documentation standards traceable to
IEEE standards for software requirement specifications[1]
and software design descriptions[2]. Requirement
specifications are formally controlled documents that
define the contract between software engineer and the
engineers who are designing NIF equipment. The design
description is a narrative document that explains the
object-oriented model and contains other information

necessary for implementation. These documents are
essential to the long-term maintainability of the software in
view of periodic software upgrades and staffing turnover
expected during the 30-year life of the NIF.

5.1 CORBA

Past architectural approaches to distributed controls have
relied on the technique of building large application
programming interface (API) libraries to give applications
access to functions implemented throughout the
architecture. This practice results in large numbers of
interconnections that quickly increases the system
complexity and makes software modification much more
difficult. To address this problem in the ICCS, software
objects are distributed in a client-server architecture using
CORBA.

CORBA is a standard developed by a consortium of major
computer vendors to propel the dominance of distributed
objects on local area networks and the worldwide web. The
best way to think of CORBA is as the universal “software
bus” [Figure 4]. CORBA is a series of sophisticated, but
standard sockets into which software objects can “plug and
play” to interoperate with one another. Even when made by
different vendors at different times, the object interfaces are
standard enough to coexist and interoperate. By design,
CORBA objects can interact across different languages,
operating systems, and networks.

Traditional Client/Server
Client Interactions
Application Mr==========—-em—————— -

(GuI)

Server Objects
(FEP)

Interface
Definition
Language (IDL)

417

IDL Compiler

Client Software
Templates

/ \\
/W [\

/ - o \

| [otea\ SOFTWARE BUS ﬁbiec& \

\
/
/

Server Software
Templates

(| Request | Request
\\ ony/ (network) ony /
\ - . /

/
/
/

\
\

\ /

Figure 4: CORBA implements a software bus

5.2 Development Environment

Software engineering tools that have been proven capable
of executing large object-oriented projects are being used to
carry out the plan. The CASE tools selected include the
Rational Rose modeling tool, and the Rational Apex Ada
compiler and configuration management tool. Objective
Interface System’s ORBexpress CORBA distribution
middleware and the Oracle 8 database management system
both contribute to the planned system, as does the Builder
Xcessory X-Windows based graphic interface construction
tool.

The software engineering process uses models expressed in
the Unified Modeling Language (UML) notation[12][14].
Detailed requirements expressed as use cases are analyzed
by developers and result in classes being defined to
implement the responsibilities of the software. The
object-oriented design is captured in the Rose design tool
using UML to maintain schematic drawings of the software
architecture.

The Rose tool is used to model the interfaces and
interactions between major software entities. Rose
automatically generates Ada code specifications
corresponding to the class interface and type definitions.
The developer fills in the detailed coding necessary to
implement each class [Figure 5].

Specification Description

| |

Engineers model Object-Oriented Object
software framework Design Tool Model
Reverse

Requirement H Design

=

—

_~Automatic

Engineering ‘Code Generation
Engineers write of Specifications
code details
Ada Lapguage NIF Object Request Broker Interface
Editor Software Specification

Distribution
Architecture Neutral
Ada Cross
Compiler

F

Ada Host
Compiler

Unix Real-time Target
Target Target Architectures
Sun Sparc VxWorks PowerPC

Figure 5: Modeling and program transformation tools
manage source text

For classes that are distributed, Rose generates Interface
Definition Language (IDL), which is passed through the
IDL compiler to generate Ada skeleton code. The IDL
compiler generates two families of packages for each IDL
interface. One package defines the client section. The body
of this package implements the proxy, which calls ORB
routines to rendezvous with the remote object
implementation. The other generated package implements
the server side, which receives invocations from any and all
clients and carries out the computations that implement the

object’s primitive procedures. The obligation of the
developer is to specify the interface for every distributed
object class and to implement the server-side package body
for every primitive operation. The code in the client that
makes use of CORBA objects is written as if the server was
locally available and directly callable — CORBA takes care
of all the rest.

Ada source code can be compiled for a variety of target
processors and operating systems. Current development is
self-hosted to Solaris on Sparc or cross-compiled for
VxWorks on PowerPC. The models, sources, binaries, and
run-time images are version-controlled by the Apex
configuration management system, which allows the
frameworks and applications to be independently
developed by different engineers, each having a protected
view of the other components.

5.3 Incremental Development

Development is guided by an iterative approach to software
construction[3]. This technique is believed to be effective
for projects whose requirements are not fully known until
late in the project development.

At the earliest stages of the project, decisions were made
based on exploratory programming exercises. The team
examined the risks posed by such untested techniques as
model-driven object-oriented development, Ada 95, and
CORBA communication by designing and testing very
small subsets of the system. Five iterations are planned
prior to the first facility deployment of the ICCS software.
Each new release will follow a plan aimed at addressing the
greatest risks to the architecture while increasing the
functionality delivered to the project.

Early demonstrations have already confirmed the basic
architecture and we are now constructing the first of three
prototype releases prior to delivery to NIF. The first
release, which is being built during the summer of 1998,
will deliver vertical slices of all applications in order to
exercise the ICCS framework. Each subsystem, including
both supervisors and FEP’s, will endeavor to demonstrate
just one of the several planned shared frameworks. The
pulse power conditioning application will exhibit the shot
countdown operation, automatic alignment will
demonstrate the customizability provided by sequence
scripts, and so on. Subsequent phases will be released to
incorporate additional subsystem integration and
automation during 1999, leading toward first deployment in
the facility in the year 2000, when the first 8 of the 192
beams will be operated under ICCS control.

6. LEVELS OF ABSTRACTION

In a large software system, coupling between components
can be managed by dividing the system into subsystems
that are organized by levels of abstraction, and then
enforcing rules for dependencies between subsystems.

When Ada packages are allocated into a collection of
subsystems, the discipline of layers of abstraction
prescribes that every package within an upper level
subsystem may depend only on packages that are allocated
to a specified set of lower level subsystems. The upper
subsystem is said to “import” the lower subsystem. Cycles
in the graph of imports are forbidden but within a
subsystem, packages may mutually depend on each other to
the extent allowed by Ada semantics.

There are two significant benefits to organizing Ada
packages into leveled subsystems. The effect of changes in
a package specification is limited to the packages contained
in subsystems that import the changed package. Therefore a
system’s stability can be seen more readily as development
proceeds, and work that is done on upper level subsystems
cannot affect the lower levels. After the specifications in
the lower levels stabilize, concern about system stability
focuses on the higher levels.

The other benefit to organizing dependencies into levels
comes when a team of developers works in a
configuration-managed environment. Each developer or
sub-group can import a controlled “view” (as provided by
the Apex development tool) of lower level subsystems, and
thus be insulated from ongoing work in the lower level.
Workers on low-level packages can enhance and test their
product, and release stable subsystems for upper level work
according to a managed schedule; developers who import
these lower levels can choose when to accept the newer
release according to the status of their own work.

6.1 Levels in the ICCS Supervisory Layer
ICCS supervisory software has been structured following
this principle. Some interesting issues arise when applying
this principle in an architecture based on object-oriented
programming because abstractions are extended by
deriving new types and those derivations may cross
subsystem boundaries. ICCS has devised some subsystem
structuring heuristics that led to an architecture that is
evidently reusable.

6.1.1 Lowest Level

At the lowest level (“Support™) the COTS products for
database management, GUI tools, CORBA libraries and
operating system interfaces are installed; subsystems in
every other level make free use of the services of the lowest
level. This level holds the most widely reusable compo-
nents since there is no control system specific information
contained in these libraries.

6.1.2 Highest Level

The highest level (“ICCS Programs”) contains those
packages and library procedures needed to link the
operational programs. All the executable processes that
need to be installed on the target system are represented in
this level. These include the front-end processor server
programs (copies of which are allocated to several different

processors), the supervisor processes at the “top of the food
chain,” and the programs that provide system services and
are allocated to the central file server computers.

A configuration audit that accounts for some Computer
System Configuration Item (CSCI) is performed starting at
a subsystem in this highest level and constructing the
closure of a compilation unit found there.

Graphic user interface processes are constructed as main
programs that interact with supervisor client main programs
through CORBA. The current technology for GUI’s uses
X-Windows libraries and COTS tools for building
interfaces. The selected tools build programs that contain
both C++ and Ada. These GUI processes are made into as
thin as possible a layer so that they can evolve as either
interface technology or styles of use dictate.

The eighteen different front-end processor programs are all
built as instances of a single generic procedure. This
generic procedure instantiation is located in the highest
level, but its specification, as well as its actual parameters,
are provided by types and their primitive procedures
defined in intermediate levels of abstraction.

ICCS Programs Supervisor applications,
Front End Processors,
Database servers,

etc

(Client and server mainlines)

Framework Services Configuration Server,

System Manager,

(Customized for a specific system) GtUI's.
etc
NIF Building blocks Devices,
Shot phases,
(Classes that model equipment) etc

Framework Templates Layer Configuration,
Monitor,
(Abstract classes for control systems) Z:chme st
Support layer Oracle DBMS,
ORBexpress ,
COTS and components etc

Figure 6: ICCS software is partitioned into levels of
abstraction

6.1.3 Type Extension Splits Intermediate Levels

ICCS software is constructed using Ada’s facilities for
programming by extension: namely the ability to declare
abstract base types and to extend those types into an
inheritance hierarchy. Applying this facility has caused
ICCS packages to be allocated into subsystems at three
levels called Framework Templates, NIF Building Blocks,
and Framework Services [Figure 6]. The subsystems in
these three levels provide a low level of reusable templates,
an intermediate level of concrete components, and an upper
level that instantiates the templates into services that act on
the components.

Subsystems in the Framework Templates level provide
abstractions that arise from a domain analysis of control
systems in experimental facilities. Control systems operate
on “devices,” so ICCS defines a class rooted at an abstract
type to represent devices. This base type declares properties
to be shared by all the control points implemented in
FEP’s: they possess references allowing distributed access
via CORBA, they are initialized with data from a central
datastore, and they can be reserved to assure exclusive
operation by a single client. Facilities for writing and
retrieving maintenance records about devices and for
monitoring and publishing their status are in this level as
well. However these facilities are incomplete (in the
Templates level) since their services are defined in terms of
the abstract type. Therefore the services could be reused by
a different project where the domain analysis shows similar
requirements.

The NIF Building Block level contains an inheritance
hierarchy that extends the abstraction of the Device. These
extensions implement all the diverse kinds of procedures
that real physical devices — motors, power supplies,
transient digitizers, and the like — provide for their users.
The tactics of inheritance and aggregation are both used to
define objects in this level. Several different kinds of
commercially available stepping motors are modeled by
subtypes of the motor class. Multi-axis motorized actuators
used for coordinated motion of optical turning mirrors are
built in software by aggregating motors and limit switches
into a composite device.

These extensions reify the interfaces that were needed to
fulfill the domain analysis. Therefore a motor device can
report its present position to the monitoring framework, and
the framework publishes that status. Similarly a power
supply device can report how many faults have been
detected, and this report becomes part of its maintenance
record.

Numerous subsystems are defined in the NIF Building
Block level to implement numerous specific details of the
facility. Devices are the most conspicuous of these since
they model the physical constituents of the laser.
Additional building blocks include a definition of the shot
phases that are enacted by an abstract state machine when
the shot director orchestrates a coordinated experiment, and
data structures used to record the outcome of physics
experiments performed by the facility.

Classes that are extended in the building block layer are
usually implemented as CORBA servers. These classes are
declared in IDL and translated into a client-side and a
server-side Ada package. Attempts are made to limit the
coupling between types in this layer so that their services
have little or no “policy” contained within them and thus
can reliably be invoked for a variety of services. These
concrete devices belong in the NIF Building Blocks level

because they implement specific functions on specific
hardware.

The complete set of control system functions is built on the
levels above the Building Blocks so the services remain
available when the device class is extended. Framework
Services, the uppermost of the three layers, elaborates the
services promised by the Templates layer.

The concrete packages that are defined here are extensible
because they use the polymorphic types in the building
block layer. And these packages, once extended, are the
components from which the ICCS Programs in the highest
level subsystems are built.

Operations that were specified as calls to the device
abstract type are realized as dispatching calls into an
appropriate subtype that has been provided by Building
Blocks. The policies omitted from the lower layers are
provided here. For example, framework services layer
subsystems specify the frequency and precision for status
reports, and actual physical maintenance records are stored.

It is the intention of the ICCS architecture to make
Framework Services available for control of different
scientific facilities whose requirements resemble NIF by
constructing customized Main Programs at the very top of
the abstraction tower. Such customizations might be
generated by inserting appropriate Device subclasses with
appropriate primitive operations and regenerating the
Services for the new installation. At the very least, the
strategy will serve the growth of NIF as innovative
experimental equipment is introduced into the facility.

6.1.4 Instantiating the Generic FEP

The eighteen different front-end processors differ from
each other only by the selection of devices that each
implements. Because most contain some hardware
controllers that are specific to the controlled devices, and
because the platforms are diskless single board computers
with limited memory, only the particular device subclasses
needed in each FEP instance are loaded into the programs.

The method for configuring the suite of particular devices
for each FEP is carried out using packages in the Building
Blocks and the Framework Services levels. Objects that are
distributed over CORBA are created using a variant of the
Factory pattern[6]. For each distinct subtype of Device
there is a corresponding subtype of the abstract type
Config_Device. Just as with Device, Config Device has its
abstract definition in Framework Templates level and its
particular subtypes in the Building Blocks level. The
Config Device object defines a method for using a factory
— a non-dispatching call that depends on a reference
parameter naming the specific installed factory for the FEP
being built. Once the device is created, Config Device then
extracts the device’s initial state from the datastore and
calls the Initialize method on the device object.

A service defined within the (lower) Framework Templates
level makes a dispatching call to the abstract
Config_Device. However, the package that invokes this
service is defined in the (upper) Framework Services level,
so that the call dispatches to the proper member of the
Config_Device class.

These operations take place strictly inside a process called
Device Configuration that runs within the central computer
facility. It is the operations within the Config Device that
invoke remote servers: first the factory then the
initialization of the created object.

So the feature that actually distinguishes one instance of
FEP from another is the Factory, which is tailored to
fabricate only those subtypes of Device that are allocated
onto that platform. Therefore there exist eighteen different
subtypes of Factory. Each inherits from the abstract Factory
type defined in the Framework Template level, and each is
dependent on a context that incorporates exactly the
population of Device subtypes allocated to the FEP
instance. The chosen Factory package is provided as a
generic actual parameter to the generic FEP procedure and
the context closure of the factory provides the intended
functionality.

6.1.5 Separation of Client from Server

Subsystems between the lowest and the highest level are
arranged to exploit the needs of type derivation and to
incorporate several variations brought on by the CORBA
distribution patterns. Classes that are implemented on
CORBA occur at several of the different levels, so the
pattern of IDL-generated packages, with proxy and
implementation sections, is widespread.

When a software object is constructed using CORBA, no
presumption is made that the object’s implementation must
be remote from the proxy. Therefore in the usual case the
body of the proxy package depends on the implementation
package, in case the particular object instance is local to the
client. This is an appropriate presumption in most cases
because the location of objects defined by IDL is intended
to be transparent to the client.

However when the particular IDL class is a device which
can only be implemented on an FEP platform equipped
with special hardware, it makes no sense for the
implementation of the primitive operations to be included
in the proxy body, and in fact it may be impossible to link
these operations if the client mainline and the server
mainline must run under different operating systems.

It is appropriate to generate Ada packages for IDL
interfaces in two different conditions: one proxy that can
invoke its implementation directly (within its own process)
and an alternate proxy that does not depend on its
implementation. It is this alternate proxy that is included
into the Device Configuration process where
Config Devices are installed because that process on the

central computer facility cannot possibly have local access
to the implementation of the Devices it creates.

The two different proxies have exactly the same
specification but differ in their dependencies, and thus are
allocated to the same subsystem but to different views as
defined by the configuration management system.

The ability for these views to share specifications is
afforded by the Apex “history” facility.

7. SOFTWARE FRAMEWORKS

The ICCS supervisory software framework is the collection
of collaborating abstractions that are used to construct the
application software. Frameworks reduce the amount of
coding necessary by providing pre-built components that
can be extended to accommodate specific additional
requirements. Engineers specialize the framework for each
application to handle different kinds of control points,
controllers, user interfaces, and functionality. The
framework concept enables the cost-effective construction
of the NIF software and provides the basis for long-term
maintainability and upgrades.

The ICCS supervisory software framework delivers
prebuilt components that are extended to accommodate
specific additional requirements in the construction of the
application software. The framework promotes code reuse
by providing a standard model and interconnecting
backplane that is shared from one application to the next.
The following discussion introduces the framework
components that form the basis of the ICCS software.

Configuration — defines the naming convention and
manages the static data for the hardware control points that
are accessible to the ICCS. Configuration provides a
taxonomic system that is used as the key by which clients
locate devices (and other software services) on the CORBA
bus. During normal operation, configuration provides to
clients the CORBA references to all distributed objects. An
important responsibility of configuration is the initialization
of front-end processors during start-up. Configuration data
are stored in the database and describe how and where the
control hardware is installed in the system. Calibration data
for sensors, setpoints for alignment devices, and I/O
channels used by devices on interface boards are examples
of static data managed by configuration. During ICCS
start-up, this framework collaborates with an object factory
located in the FEP. Using the data and methods stored in
the configuration database, the object factory creates,
initializes, and determines the CORBA reference for each
device and controller object in the FEP.

Generic FEP — pulls together the distributed aspects of the
other frameworks (in particular the system manager,
configuration, status monitor, and reservation frameworks)
by adding unique classes for supporting device and
controller interfacing. These classes are responsible for
hooking in CORBA distribution as well as implementing

the creation, initialization, and connection of device and
I/0 controller objects. The generic FEP also defines a
common hardware basis including the target processor
architecture, backplane, I/O boards, device drivers, and
field bus support. The FEP application developer extends
the base classes to incorporate specific functionality and
state machine controls.

System Manager — provides services essential for the
integrated management of the ICCS network of hundreds of
computers. This component ensures necessary processes
and computers are operating and it provides failover
services for processes that terminate during operation.

Status Monitor — provides generalized services for
broad-view operator display of device status information
using the push model of event notification. The status
monitor operates within the FEP observing devices and
notifies other parts of the system when the status changes
by a significant amount. Network messages are only
generated when changes of interest occur.

Message Log — provides event notification and archiving
services to all subsystems or clients within the ICCS. A
central server collects incoming messages and associated
attributes from processes on the network and writes them to
appropriate persistent stores. Interested observers use
DBMS retrieval techniques to update GUI windows on the
screens of operators’ consoles or produce historic audit
trails of operations.

Alert System — any application encountering a situation
that requires immediate attention raises an alert, which then
requires interaction with an operator to proceed. The alert
system records its transactions so that the data can be
analyzed after the fact.

Sequence Control Language — used to create custom
scripting languages for the NIF applications. The service
automates sequences of commands executed on the
distributed control points or other software artifacts.
Operators create and edit sequences by selecting icons that
represent control constructs, Boolean functions, and
user-supplied methods from a visual programming palette.
The icons are then interconnected to program the sequence
and any Boolean conditions or method arguments needed
are defined to complete the sequence script.

Graphical User Interface — enables all human interaction
with the ICCS, via graphical user interfaces displayed upon
control room consoles or on X Terminals distributed
throughout the facility. The GUI is implemented as a
framework in order to ensure consistency across the
applications. Commercial GUI development tools are used
to construct the display graphics. This framework consists
of guidelines for look and feel as well as common graphical
elements for beam selection, laser map, status summary,
and countdown clock.

Reservation — manages access to devices by giving one
client exclusive rights to control or otherwise alter the
device. The framework uses a lock-and-key model.
Reserved devices that are “locked” can only be
manipulated if and when a client presents the “key”.

Machine History — gathers information about the
performance during operation of the NIF for analysis in
order to improve efficiency and reliability. Examples of
such information are installation and service of
components, abnormal conditions, operating service time or
usage count, periodic readings of sensors, and alignment
reference images.

Shot Data Archive — collects the 400-Mb data generated
by a shot, makes it immediately available for “quick look”
analysis, and delivers it to an archive. The framework
contains a server working in collaboration with the system
manager to assure that requested shot data are delivered to
a disk staging area. The archive server is responsible for
building a table of contents file and then forwarding the
table and all data files to the archive. The ICCS is not
responsible for the permanent storage or in-depth study of
shot data. The long-term study of experimental results is
allocated to the scientific programs that utilize the Facility.

8 .MEASUREMENTS THAT CONFIRM
FEASIBILITY

Two cycles of exploratory programming were carried out
before the project Final Design Review. At the completion
of these preliminary iterations, approximately 5% of the
estimated lines of code had been prototyped and two
substantial development risks had been addressed. Object
oriented techniques had been wused to construct
representative parts of ICCS in Ada, and these parts, as
well as numerous standalone tests, had confirmed the
ability of CORBA to support ICCS performance
requirements.

The architecture was confirmed by the prototype. Several
distinct kinds of devices were defined and elaborated by the
configuration framework, including multi-axis gimbals
implemented using stepper motors, photodiodes for laser
energy measurement, and precision timing equipment.
These device tests relied on data transmitted from an
Oracle database into remote FEP’s that were instantiated
from the Generic FEP framework. Software infrastructures
for system start-up and process management, for audit trail
generation, and for database query were examined. The
tests also demonstrated distributed control and monitoring
provided by the architecture. NIF’s automatic alignment
design, which uses image analysis and closed-loop control
to align optics without human intervention, was confirmed
in an optical testbed.

Because CORBA handles the data format conversion
necessary to interoperate with diverse computer systems, it
is a more heavyweight protocol than previously used for
control system distribution. Object request brokers have

been reported[13] to perform about three times slower than
point-to-point communication schemes (e.g. sockets). For
this reason, we established a significant testing capability to
predict the operational performance of multi-threaded
CORBA (ORBexpress by Objective Interface Systems)
under various deployment schemes.

Results for different sizes of message streams are shown
[Figure 7] for transactions between two UltraSparc
machines (one was an Enterprise 3000 server and the other
a 3D Creator workstation, both with 300 MHz processors).
Measurements of CORBA on PowerPC/VxWorks are in
progress, but performance is expected to be similar, as CPU
performance is generally similar. Message rates for 100
Mb/s Ethernet are shown along with client and server CPU
and network bandwidth utilization. An additional plot is
shown for 10 Mb/s Ethernet, which is used to attach many
of the FEP’s.

3000 " " " " " " " " " " 100%

2700 ¥ p-g - b & 1 90%

—e—\Isg Rate (100Mbit)]- =+~~~ \- -~ -1 70%
—e—NMsg Rate (10 Mbit) ! !

% Client CPU
21500 |—e—2% Server CPU
L 1200 {—®—% Network

o 2400
C

52100
® 1800

60%

ar Se

NN sow

4 Utilization

[SRR R N2 R Vo o

900 30%

Meaaa

600 20%

300

~ 10%
p

B AR X oo
A I S N Y S P
RN S A

Message Size (Bytes)

Figure 7: Performance results for CORBA

We determined that most control system transactions utilize
on the order of 100 byte messages. For this case, CORBA
can transact at about 2700 messages per second while
utilizing 80% of the client CPU and 30% of the server
CPU. The reason for the wide difference in CPU utilization
between client and server is not fully understood and is
under investigation. For small message sizes, the CPU is
the limiting resource, as the network is not heavily utilized
(note that other computers are using the remaining network
bandwidth). However, as messages become larger (e.g.,
during post-shot data retrieval) the network becomes the
limiting factor. In the ICCS design, we have partitioned our
subsystems such that the message rate design point will
average about 500 control transactions per second. This
approach provides a fivefold capacity margin to
accommodate episodic bursts of message activity that are to
be expected occasionally in an event driven architecture.
The performance of the ICCS deployment is estimated by
measuring software prototypes on our distributed computer
testbed and scaled to the NIF operating regime by discrete
event simulation techniques.

Predeployment testing will continue through 1999,
including the delivery of three increments of production
prototype to an independent testing organization for
preliminary reliability estimation. Nearly all control
functions will be deployed to control the first “bundle” of
eight beams in early 2000, and experiments on that laser
will be carried out late that year. Project completion will
occur in 2003.

9. ACKNOWLEDGEMENTS

We acknowledge the contributions of our colleagues
without whose efforts this work would not be possible:
G. Armstrong, R. Bettenhausen, R. Bryant, R. Carey,
R. Claybourn, T. Dahlgren, F. Deadrick, R. Demaret,
C. Estes, K. Fong, M. Gorvad, F. Holloway, J. Jones,
C. Karlsen, R. Kyker, L. Lagin, G. Larkin, G. Michalak,
P. McKay (Sandia National Laboratory, Albuquerque NM),
M. Miller, V. Miller Kamm, C. Reynolds, R. Reed,
R. A. Saroyan, W. Schaefer, J. Spann, E. Stout, W. Tapley,
L. Van Atta, and S. West.

10. DISCLAIMER

Work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory
under Contract W-7405-ENG-48.

11. REFERENCES
[1] ANSI/IEEE Std 830-1984, IEEE Guide to Software
Requirements Specification

[2] ANSIIEEE Standard 1016-1987, IEEE Recommended
Practice for Software Design Descriptions.

[3] B.W.Boehm, “A Spiral Model of Software
Development and Enhancement,” IEEE Computer,
May 1988, p 61.

[4] E. Michael Campbell, Neil C. Holmes, Steve B. Libby,
Bruce A. Remington, and Edward Teller “The
Evolution of High-Energy-Density Physics: from
Nuclear Testing to the Superlasers” Laser and Particle
Beams 1997, vol. 15, no. 4, pp 607-626.

[5] Keay Davidson “From Swords to Supernovae,” Sky
and Telescope, November 1997, p 36.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides “Design
Patterns: Elements of Reusable Object-Oriented
Software,” Addison-Wesley 1995.

[71 William J. Hogan, Roger O. Bangerter, and Charles P.
Verdon “The Fire Next Time,” The Sciences, Vol. 36
No. 5, September/October 1996, p 20.

[8] National Ignition Facility
http://lasers.lInl.gov/lasers/nif.html

webpage

[9] Object Management Group “The Common Object
Request Broker: Architecture and Specification” John
Wiley and Sons 1995.

[10]J. A. Paisner and J. R. Murray “The National Ignition
Facility for Inertial Confinement Fusion,” 17th
IEEE/NPSS Symposium on Fusion Engineering, San
Diego CA, October 6-10, 1997.

[11]Ted Perry and Bruce Remington “Nova Laser
Experiments and Stockpile Stewardship,” Science and
Technology Review, September 1997
http://www.lInl.gov/str/Remington.html

[12]James Rumbaugh, Ivar Jacobson, and Grady Booch
“Unified Modeling Language Reference Manual”
Addison Wesley, expected 1998.

[13] Schmidt, D.C., Gokhale, A., Harrison, T.H., Parulkar,
G., “A High-Performance End System Architecture for
Real-Time CORBA,” IEEE Communications
Magazine Vol 14, Num 2, February 1997, pp72-77.

[14]“UML 1.1 Specification” http://www.rational.com/-
uml/

[15]“Veil of Secrecy is Lifted From Parts of Livermore’s
Laser Fusion Program,” Physics Today, September
1994, p 17.

